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Abstract  

We consider a two-layer quasigeostrophic model of the general atmospheric circulation. It is assumed that there are field 

measurements of air velocity. These observations are used to find the unknown initial state of the model. The discrepancy 

between the observed values and the model results is measured by a cost function value. We prove the solvability of the 

optimization problem for positive values of the regularization parameter. The system of equations is approximated by an explicit 

spectral-difference scheme. A theorem is proved that the numerical solutions of the data assimilation problem converge to its 

exact solutions. 

 

Keywords: Optimization problem, model of the atmospheric dynamics, spectral-difference scheme. 
 

Introduction 

A rigorous mathematical analysis and justification of the 

variational data assimilation procedure includes the study of 

such issues as the existence of solutions to the optimization 

problem and the convergence of numerical solutions to exact 

solutions. In this paper we study these issues in relation to the 

two-layer baroclinic quasi-geostrophic atmospheric general 

circulation model. The main variables of the model are 

barotropic and baroclinic components of the stream function, 

but the stream function is not one of variables for which in 

meteorology are carried out the field observations. For this 

reason, it is assumed that the measurements of the velocity of air 

are known. The initial state is chosen as the model parameter to 

be determined because the initialization problem is one of the 

best known and most commonly solved in practice. 

 

Note that the convergence of numerical solutions of the data 

assimilation problem earlier has been studied for the quasi-

geostrophic models in a rectangular region under the 

assumptions that the equations are approximated by the implicit
1
 

or semi-explicit
2
 finite-difference schemes and the observations 

on the ocean surface elevation are given . 

 

Material and Methods 

The atmospheric general circulation model: Let S  be a two-

dimensional sphere of radius R , [0,2 )θ π∈  be the longitude, 

[ ]/ 2; / 2ϕ π π∈ −  be the latitude, Ω  be the the angular velocity 

of the Earth rotation. By = 2 sinl ϕΩ  we denote the Coriolis 

parameter, 
2

2 2 22

1 1
= cos

coscosR R
ϕ

ϕ ϕϕ θ ϕ

 ∂ ∂ ∂
∆ +  

∂ ∂∂  
 is the 

Laplace-Beltrami operator, 
2

1
( , ) =

cos

u v v u
J u v

R θ ϕ θ ϕϕ

 ∂ ∂ ∂ ∂
− 

∂ ∂ ∂ ∂ 

 is the 

Jacobian. 

 

The atmosphere is divided vertical into two layers, the first layer 

correspond to the pressure from 0 to 500 mb and the second 

layer correspond to the pressure from 500 to 1000 mb, 

1 1
= ( , , )tψ ψ θ ϕ , 

2 2
= ( , , )tψ ψ θ ϕ  are the stream functions 

within the first and the second layers, 
1 1 2

= ( ) / 2x ψ ψ+ , 

2 2 1
= ( ) / 2x ψ ψ−  are barotropic and baroclinic components of 

the stream function, 
1 2

= ( , )x x x . We consider the atmospheric 

general circulation model 3 :  

 

( ) ( ) ( )21

1 1 2 2 1 1 2 1
, , = ,

x
J x x l J x x x x x f

t
µ σ

∂∆
+ ∆ + + ∆ ∆ − ∆ + +

∂
     (1) 

( ) ( )

( ) ( )

2

2 1 1 2

2

2 1 2 1 2 1 2 1 2 2

( )
, , =

= , ,

x
J x x l J x x

t

x x x J x x x x f

α

µ σ α µ σ

∂ ∆ −
+ ∆ + + ∆

∂

∆ − ∆ + + − ∆ + +

          (2) 

 
0=0

= .
t

x x                (3) 

Here 
1 1

, , , ,σ µ σ µ α  are positive constants and 
1 2
,f f  are given 

functions. 

 

Introduce the real Hilbert space { }0

2 2= ( , ) ( ), = 0
S

L u L S udSθ ϕ ∈ ∫  

with the scalar product ( , ) =
S

u v uvdS∫  and the norm 

1/2= ( , )u u u� � . Associate the operator ( )−∆  with the scale of 

Hilbert spaces = ( )p p
H H S , p ∈R , by assuming 

{ }0 /2

2= ( , ) , = ( ) <p p

pH u L u uθ ϕ ∈ −∆ +∞� � � � . For vector functions 

1 2= ( , )x x x  we introduce the spaces = ( ) = p p

p p
V V S H H×  with 
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the norm ( )
1/2

2 2

1 2=p p px x x+� � � � � � , where 
0 0

0 2 2=V L L× , 

0x x≡� � � � . 

 

Let 0 < <T +∞  and = (0, )G S T× . By ( , )
G

⋅ ⋅  and 
G

⋅� �  we 

denote the scalar product and the norm in the space 2 ( )L G  

respectively. Introduce the real spaces of the functions 

determined in G :  

( ) ( ) ( )2 3 2 2 1 2 1
= 0, ; , = 0, ; , = 0, ; ,X L T V Y L T V Y L T V

( )2 1 1
= 0, ; , = , .

x
Z L T V W x X Y

t
−

 ∂
∈ ∈ 

∂ 
 

 

We also introduce the bilinear forms 1( , )a u v , 2 ( , )a u v , 1( , )b u v  

and the trilinear form 2 ( , , )b u v w  by setting  

( )1 1 1 2 2 2 2
( , ) = ,

S
a u v u v u v u v dSα∇ ∇ + ∇ ∇ +∫

2 1 1 2 2 1 2 2

1 2 1 2 1 2 2

( , ) = { ( )

( ) ( ) } ,

S
a u v u v u v u v

u u v v u v dS

µ µ

σ σ

∆ ∆ + ∆ ∆ + ∇ ∇ +

+ ∇ + ∇ + +

∫  

[ ]1 1 1 2 2
( , ) = ( , ) ( , ) ,

S
b u v J u l v J u l v dS+∫  

{

}

2 1 1 1 2 2 1 1 2 2

2 1 2 2 2 1

( , , ) = ( , ) ( , ) ( , )

( , ) ( , ) .

S
b u v w J w v u J w v u J w v u

J w v u J w v u dSα

∆ + ∆ + ∆ +

+ ∆ +

∫
 

The system (1)-(2) can be written as  

 

( ) ( ) ( ) ( )1 2 1 2 2
, , = , , , ,

x
a y a x y b x y b x x y f y y V

t

 ∂
+ + − ∀ ∈ 

∂ 
 

where 
1 2

= ( , )f f f . 

 

Further the letter c  denotes various positive constants. We will 

need the following statements. 

 

Lemma 1. The inequalities hold 3,4  

2 2 2 2 2
| ( , , ) | , , ,b u v w c u v w u v w V≤ ∀ ∈� � � � � �  

1/ 4 1/2 1/ 2 2

( ) 1 2
4

2 ,L Su u u u H∇ ≤ ∀ ∈� � � � � �  

2

( ) ( ) 2
4 4

| ( ( , ), ) ( ( , ), ) |

, , .L S L S

J w u v J w v u

c u v w u v w H

∆ + ∆ ≤

≤ ∇ ∇ ∀ ∈� � � � � �
 

Lemma 2: Let 
0

B , 
1

B , 
2

B  be three Banach spaces where 

0 1 2
B B B⊂ ⊂ , 

0
B  and 

2
B  are reflexive, 

0
B  is compactly 

embedded into 
1

B , and 
1

B  is continuously embedded into 
2

B ; 

let 
0 2

0 1
= (0, ; ), (0, ; ) ,

p p

x
W x L T B L T B

t

 ∂
∈ ∈ 

∂ 
 where T  is finite 

and 1 < <
k

p ∞ , = 0,1k . Then the embedding of W  into 

1
0
(0, ; )pL T B  is compact 5 . 

 

Theorem 1 3 : For all 
0 2

x V∈  and F Z∈  the problem (1)-(3) 

has the unique solution x W∈ , and the estimates hold 

( )1 0 1
0

( )max Y Z
t T

x t x c x f
≤ ≤

+ ≤ +� � � � � � � � ,  

( )2 0 2
0

( )max X Z
t T

x t x c x f
≤ ≤

+ ≤ +� � � � � � � � , 1
1

/
Y

x t c∂ ∂ ≤ ,  

where 
1

c  is a constant depending on 
0 2

x� �  and 
Z

f� � . 

 

Write the problem (1)-(3) down briefly as ( )0( ) = ;x f xΦ . It 

follows from Theorem 1 that there exists a bounded inverse 

operator 
1

2:Z V W
−Φ × →  defined on all 2Z V× . 

 

Lemma 3: Let f Z∈ , ( )1= ;
n n

x f y
−Φ , ( )1

0= ;x f x
−Φ  and 

0n
y x→  weakly in 2V . Then 

n
x x→  weakly in W . 

 

Proof. The sequence { }n
y  is bounded in 2V . On Theorem 1 the 

sequence { }n
x  is bounded in W . Choose a convergent 

subsequence in it: 
n

x z→  weakly in W . By Lemma 2, then 

n
x z→  strongly in Y . The space [ ]( )20, ;C T V  is continuously 

embedded 6  into W , so ( , ,0)
n

y z θ ϕ→  weakly in 2V . Using 

the estimates of Lemma 1, we see that ( ) ( )2 2, , , ,
n n

b x x y b z z y→  

weakly in ( )2 0,L T  for all 2y V∈ . Taking the limit as n → ∞ , 

we find that z  is a solution of (1)-(3), i.e. =z x . 

 

The data assimilation problem: Let us assume that we know 

observation data for the velocity vector of air in the first and the 

second layers given by functions 
0

k
u , 

0

k
v , = 1, 2k  on some 

measurable subset 0G G⊂ . Denote by χ  the characteristic 

function of 0G  and extend 
0

k
u , 

0

k
v  onto 0\G G  by zero. We 

associate to each solution of (1)-(3) the functions 

1 1 2( ) =x x xψ − , 
2 1 2( ) =x x xψ + , ( )1

( ) = k

k

x
u x

R

ψ

ϕ

∂

∂
, 

( )1
( ) =

cos

k

k

x
v x

R

ψ

ϕ θ

∂
−

∂
, = 1, 2k . 

Define the following cost functional on W :  

 
( )

2 2
0 0

1 1 1 2 1 1

2 2
0 0

3 2 2 4 2 2

= ( ) ( )

( ) ( )

G G

G G

I x m u x u m v x v

m u x u m v x v

χ χ

χ χ

− + − +

+ − + −
 

where 
1

m , 
2

m , 
3

m , 
4

m  are non-negative weight coefficients. 

 

Assume that the external forcing f  in the model is known and 

the observation data should be used for determination of the 

initial state 
0

x . Define on 
2

V  the functional  

 ( ) ( )( )
2

1

0 0 0 02
= ;a

J x x x I f xλ λ −− + Φ         (4) 

where 0λ ≥  is a regularization parameter, 
0 2

a
x V∈  is a priori 

known approximate value of 
0

x . 
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Consider the following data assimilation problem: given an 

external action f Z∈ , determine 
0 2

x V∈  so that  

 ( ) ( ){ }0 2= inf | .J x J y y Vλ λ ∈             (5) 

Sufficient conditions for its solvability gives the theorem. 

 

Theorem 2: If > 0λ  and functions 
0

k
u , 

0

k
v , = 1, 2k  belong to 

( )2
L G , then problem (5) has a solution. 

 

Proof: Denote ( ){ }2= inf |m J y y Vλ ∈  and consider a sequence 

{ }n
y  minimizing the functional Jλ , that is ( )lim =n

n
J y mλ

→∞
. If 

> 0λ  then { }n
y  is bounded in 

2
V . Choose a subsequence 

0n
y x→  weakly convergent in 

2
V . Define ( )1= ;

n n
z f y

−Φ  and 

( )1

0
= ;x f x

−Φ . By Lemma 3 we have a convergence 
n

z x→  

weakly in W . It follows from Lemma 2 that 
n

z x→  strongly in 

Y . Then ( ) ( )
k n k

u z u x→  and ( ) ( )
k n k

v z v x→ , = 1, 2k , 

strongly in ( )2
L G . Thus, ( ) ( )lim =n

n
I z I x

→∞
. By the property of 

weak lower semicontinuity of norms we have 

0 0 02 2
limsupa a

n
n

x x y x
→∞

− ≤ − , therefore ( )0
J x mλ ≤ . Taking 

into account the definition of m , we conclude that 
0

x  is a 

solution of (5). Since ( )0
=J x mλ , then 

2 0 2n
y x→� � � �  so 

0n
y x→  strongly in 

2
V .  

 

The approximate data assimilation problem: Now consider a 

discrete method for determination of approximate solutions to 

the problem (5). Let 
n
H  be the eigensubspace of the Laplace-

Beltrami operator corresponding to the eigenvalue 

= ( 1)
n

n nΛ +  and spanned onto spherical harmonics ( , )
mn

Y θ ϕ , 

| |m n≤ . Denote 
=1

=N N

n n
∪H H , =N N NΞ ×H H  and also denote 

the operator of the orthogonal projection onto N
H  by 

N
P . Let 

= /T Kτ  be the grid time step, =
k

t kτ , = 0,k K , k
x  is the 

approximate solution in the layer =
k

t t . Further we assume that 

for varying τ  and N  the inequality  

 
2= ( 1) ( )

N
N Nτ τ µ ν µ −Λ + ≤ −                           (6) 

holds with some constant (0, )ν µ∈ . 

Approximate the problem (1)-(3) by the explicit spectral-

difference scheme:  

1 1 1 2 2

2

1 2 1 1

2 2 1 1 2

2

1 2 1 2 2 1 2 1 2 2

0

/ ( , ) ( , )

( ) = ,

( ) / ( , ) ( , )

( , ) ( ) = ,

, = 0, , = ,

k k k k k

N N

k k k k N

k k k k k

N N

k k k k k k k k N

N

k N N

D P J x x l P J x x

x x x q

D P J x x l P J x x

P J x x x x x x x q

x k K x

τ

σ µ

α τ

α σ µ µ σ

ρ

∆ + ∆ + + ∆

+ ∆ + − ∆ ∈

∆ − + ∆ + + ∆

− + ∆ + − ∆ + ∆ − ∈

∈Ξ ∈Ξ

H

H

 (7) 

where 
1=k k k

j j j
D x x

+ − , = 1, 2j . Write down system (7) in a 

brief form ( ) = ( ; )F x q ρ , where the operator F  depends on τ  

and N , but for the sake of brevity, we omit this dependence. 

Equations (7) form a system linear with respect to 1k
x

+  with a 

nondegenerate matrix. Therefore, the operator F  is uniquely 

invertible on the whole ( )
K

N NΞ × Ξ . In order to extend the grid 

function 
=0

= { }k K

k
x x  onto the whole time segment [0, ]T , we 

associate it with the function of a continuous argument  

11

1( )( , , ) = ( , ) ( , ) for [ , ].k kk k

k k

t t t t
A x t x x t t tθ ϕ θ ϕ θ ϕ

τ τ
++

+

− −
+ ∈

 

We define on NΞ  the cost functional similar to the functional 

(4) by setting ( ) ( )( )( )
2

1

0 2
= ;a

S x I A F qλ ρ λ ρ ρ−− + , where 

the external influence ( )
K

N
q ∈ Ξ  is considered to be known and 

fixed. Consider the following discrete data assimilation 

problem: given an external action ( )
K

N
q ∈ Ξ , determine the 

initial function 
Nρ ∈Ξ  so that  

   ( ) { }= inf ( ) .N
S S y yλ λρ ∈Ξ       (8) 

 

Note that this problem is the approximate finite-dimensional 

analogue of the optimization problem (5). 

 

For the time-dependent functions we define the projection 

operator on the grid 
h

P  by the formula 
11

= ( )
t
kk

h N
t
k

P f P f t dt
τ

+

∫ . 

Introduce the norms 
1/ 2

2

2

=1

=
K

k

X
h

k

x xτ
 
 
 
∑� � � � , 

1/ 2
1

2

2

=0

=
K

k

Z
h

k

q qτ
−

−

 
 
 
∑� � � �  

 
1

0

[ ] = max
k

h
k K

x x
≤ ≤

� � , = [ ]W h X
h h

x x x+� � � � . We will need the 

following statement. 

 

Theorem 3 7 :  Let X  and Y  be Banach spaces, : X Y→F  be 

a Frechet-differentiable operator and: 

1) (0) = 0F ;2) the Lipschitz inequality is valid for its derivative  

 
1 2 1 2 1 2

( ) ( ) , (0)
rX Y X

y y L y y y y B
→

′ ′− ≤ − ∀ ∈F F  

where (0) = { }
r X

B y X y r∈ ≤� � , = ( ) > 0L L r  is a constant 

depending on r ;  

 

3) the operator (0)′F  is closed and has the continuous inverse 

operator 
1( (0))−′F  determined on the whole Y . 

Then for any q Y∈  such that 
2/ ( )

Y
q M Lγ≤� � , where 

0 < < 1γ , 
1= ( (0))

Y X
M

−

→
′F , there exists a unique element 

x  being the solution to the equation ( ) =x qF  and satisfying 

the estimate / ( )
X

x MLγ≤� � .  
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Denote by ( )F y′  the derivative of F  and consider the equation  

            
( ) = ( ; )F y x q ρ′           (9) 

which is a system  

1

1 1 2 2

2

1 1 2 2 1 2 1 1

( , ) ( , )

( , ) ( , ) ( ) = ,

k

k k k k

N N

k k k k k k k k

N N

D
P J x y l P J x y

P J y x P J y x x x x q

τ
σ µ

∆
+ ∆ + + ∆ +

+ ∆ + ∆ + ∆ + − ∆

     (10) 

 

2

2 1 1 2

2 1 1 2 1 2

2

1 2 1 2 2 1 2 1 2 2

( )
( , ) ( , )

( , ) ( , ) ( , )

( , ) ( ) = ,

k

k k k k

N N

k k k k k k

N N N

k k k k k k k k

N

D
P J x y l P J x y

P J y x P J y x P J y x

P J x y x x x x x q

α

τ
α

α σ µ µ σ

∆ −
+ ∆ + + ∆ +

+ ∆ + ∆ − −

− + ∆ + − ∆ + ∆ −

     (11) 

 
0, = 0, , = .k N N

x k K x ρ∈Ξ ∈ Ξ  

 
Theorem 4: If (6) is valid, then the solution of equation (9) 

satisfies ( )
1/ 2

2 2

2 1W Z
h h

x c qρ≤ +� � � � � � , where 
2

> 0c  depends 

on W
h

y� �  only. 

Proof: By taking the inner product of (10), (11) by 1k
xτ +  in 

0 0

2 2
L L× , we have  

1 2 2 1 2 2 1 2

1 1 2 2 2

2 2 1

1 2 1 1

1

2 2 1 1 2 2 1

2 1 1 2 2 1

1 2 1 2

1 1

2 2 2 2

1
= ( , ) ( ( , )

2 2

( , ) ( , ) ( , ), )

( ( , ) ( , ) ( , )

( , ) ( ,

k k k k k

k k k k k k

k k k k k k k

k k k k k k

k k k

x D x D x

x x q x J x y l

J x y J y x J y x x

J x y l J x y J y x

J y x J y x

α α
τµ

α
τ τ

τ

α

+ + +

+

+

+ + + +

+ − + ∆ +

+ ∆ + ∆ + ∆

+ ∆ + + ∆ + ∆

+ ∆ −

� � � � � � � � � �

� � � �

1

1 2 2

2 1 1 1

1 2 1 2

1 1

1 2 2 1 2 2

) ( , ), )

( , ) ( ( ), )

( , ) ( , ).

k k k k

k k k k k k

k k k k

J x y x

D x x x x x

x x x x

α

τµ τσ

τµ τσ

+

+ + +

+ +

−

+ ∆ + ∆ + +

+ ∆ −

 

 

 

Using (6), Lemma 1 and Young inequality, we estimate the 

following quantities:  

2 1 1 2 2 2 1 2

1 2 1 2

2 1 2

1 2

1
| ( , ) |

4

1
( ) ,

4

k k k k k k

N N

k k

D x D x D x

D x

τµ τµ τ µ

τ µ ν

+ + +

+

∆ ≤ Λ ≤ + Λ

≤ + −

� �� � � � � �

� � � �

 

 

( )

( )

1 1

2 2 2 2 1 1 2 2 ( ) 2 ( )
4 4

1 1/2 1 1/2 1/4 1/2

1 2 2 1 2 2 2 1 2 ( )
4

1 2 2 2 4

2 2 1 2 1 2 ( )
4

( , ) ( , ),

1
.

6 64

k k k k k k k k

L S L S

k k k k k

N L S

k k k k

L S

J x y J y x x c x x y

c x x x D y

x D c x y

τ τ

τ

τν
τ

+ +

+ +

+

∆ + ∆ ≤ ∇ ∇

≤ +Λ ∇

≤ + + ∇

� � � � � �

� � � � � � � � � �

� � � � � � � �

 

By applying the similar arguments we obtain the inequality  

 
1 2 1 2 1 2

1 2 2

2 2 2 2 2

1 2 1 2 1 2(1 (1 ))

k k k

k k k k k

x x x

c y y x x c q

α τν

τ α τ

+ + +

−

+ + ≤

≤ + + + +

� � � � � �

� � � � � � � � � �
 

which implies the estimate ( )( )2 4 2 2

1
exp

W W Z
h h h

x c y qρ≤ +� � � � � � � � . 

 

Lemma 4: For F ′  the Lipschitz inequality is valid 

1
( ) ( )

W Z V W
h h h

F y F z L y z→ ×
′ ′− ≤ −� � � �  where L  is a positive 

constant not depending on τ  and N . 

 

Proof: Set =s y z− . For every 
1( )N K

x
+∈ Ξ  we have the 

equality ( ) ( ) = ( ;0)F y x F z x ξ′ ′−  where  

 

1 1 1 2 2 1 1 2 2= ( ( , ) ( , ) ( , ) ( , )),k k k k k k k k k

N
P J x s J x s J s x J s xξ ∆ + ∆ + ∆ + ∆  

2 2 1 1 2 2 1 1 2

1 2 1 2

= ( ( , ) ( , ) ( , ) ( , )

( , ) ( , )).

k k k k k k k k k

N

k k k k

P J x s J x s J s x J s x

J s x J x s

ξ

α α

∆ + ∆ + ∆ + ∆

− −
 

Let ( )N K
r ∈ Ξ . Using the estimates such as  

 

( )1 1 1 1 1 1 2 1 ( ) 1 ( )
4 4

1/2 1/2 1/2 1/2

1 2 1 1 1 2 1 1 1 2

( , ) ( , ),

,

k k k k k k k k

L S L S

k k k k k

J x s J s x r c r s x

c r s s x x

∆ + ∆ ≤ ∇ ∇

≤

� � � � � �

� � � � � � � � � �
 

we get the inequality  

 
1/2

1 1
2 1/2 1/2 1/2 1/ 2

2

=0 =0

( , ) [ ] [ ] .
K K

k k k

h X h X
h h

k k

r L r s s x xτ ξ τ
− − 

≤  
 

∑ ∑� � � � � �  

Now verify the following assertions of the stability and the 

convergence of scheme (7). 

 

Theorem 5:  If (6) is valid and x  is the solution to the equation 

( ) = ( ; )F x q ρ  and y  is the solution to the equation 

( ) = ( ; )F y q dq dρ ρ+ +  then for any > 0ε  there exists > 0δ  

depending on ε  and W
h

x� �  only and such that W
h

x y ε− ≤� �  

for ( )
1/ 2

2 2

1 Z
h

d dqρ δ+ ≤� � � � . 

 

Proof: Denote =z y x−  and consider the operator 

( ) = ( ) ( )z F x z F x+ −F  acting from 
h

W  into 
1h

Z V× . By 

Lemma 4 the derivative ( ) = ( )z F x z′ ′ +F  satisfies the 

Lipschitz inequality and virtue of Theorem 4 the norm of the 

inverse operator 
1( (0))−′F  satisfies the estimate 

1

2
1

( (0)) Z V W
h h

c
−

× →
′ ≤� �F . Thus, F  satisfies all the conditions of 

Theorem 3. Since the solution to (7) is unique, then for 

completing the proof it is sufficient to assume 
2

2
= (1 ) / ( )c Lδ γ γ− , where 

2
= min{ ,1/ 2}c Lγ ε . 

 

Theorem 6:  Let (6) be valid, 
0 2

x V∈ , f Z∈ , a function 

x W∈  be the solution to problem (1)-(3), = ( )k

N k
w P x t , 

= 0,k K , a grid function y  be the solution to the equation 

( )0
( ) = ;

h N
F y P f P x . Then we have the convergence 

0W
h

y w− →� �  for 0τ → , N → ∞ . If in addition 
0

j
u , 

0

j
v , 

= 1, 2j , belong to 
2
( )L G , then ( ( )) ( )I A y I x→  as 0τ → ,  

N → ∞ . 
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Proof: Applying the operator 
h

P  to both sides of (1) and (2), we 

obtain the equation 
0

( ) = ( ; )
h N

F w P f dq P x+ . Denote =
N

z P x , 

=t

z
z

t

∂

∂
, =t

x
x

t

∂

∂
, 2

0
[ ] = max ( )

t T
x x t

≤ ≤
� �  and estimate the typical 

terms in the residual dq : 

1 12 2 2

1

1 1
= ( ( ) ) = ( ) ,
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k kk k

k t
t t
k k

d z t w dt t t z dt
τ τ

+ +

+∆ − ∆ − ∆∫ ∫  
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τ
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+ + +

− + +

Λ Λ  − ≤ − ≤  
 ∫ ∫ ∫� � � � � � � �  

so 
1

Z t Y
h

d c xτ≤� � � � . Further we estimate  

 ( )11
= ( , ) ( , ) = ,

t
kk k k k k

N
t
k

P J w w J x x dtδ β η
τ

+ ∆ − ∆ +∫  

 

( ) ( )1 11 1
= ( , ) ( , ) = ( , ) ( , ) ,

t t
k kk

N N
t t
k k

P J z z J x x dt P J z x x J z z x dtβ
τ τ

+ +∆ − ∆ − ∆ + ∆ −∆∫ ∫  
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1
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Z N Y X

h
N

c
c x P x x x xβ

+

≤ − ≤
Λ
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For the second term included in kδ  we have  

 

( )1 1

1

1 1 ( , )
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t t
k kk k k

N k N
t t
k k

J z z
P J w w J z z dt t t P dt

t
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+
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∆ − ∆ −
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1 1
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k N kk
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1 2 2
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1
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t
k

N t Z t Y
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k

c x x dt c x xτ η τ+ ≤ Λ ≤ 
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Applying the similar arguments we see that 0Z
h

dq →� �  for 

0τ → , N → ∞ . It is not difficult to see that W W
h

w c x≤� � � � . 

By Theorem 5 we have the convergence 0W
h

y w− →� �  for 

0τ → , N → ∞ . Now we estimate 

1 1 1 1
( ) ( ) ( ) ( )Y Y Y YA y x A y A w A w z z x− ≤ − + − + −� � � � � � � � , 

where 
1

( ) ( ) Y W
h

A y A w c y w− ≤ −� � � � ,  

1

1 1( ) = ( ( ) ( )) ( ( ) ( )) [ , ],k k
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t t t t
A w z z t z t z t z t for t t t

τ τ
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1

1
1 1 1

( ) , .
Y t Y Y N X

A w z c x z x xτ τ −

+− ≤ − ≤ Λ� � � � � � � �  

Since ( )A y x→  strongly in 
1

Y , then ( ( )) ( )I A y I x→  as 

0τ → , N → ∞ . 

 

Results and Discussion 

The main result of the paper is the following theorem on the 

convergence of numerical solutions to the data assimilation 

problem. 

 

Theorem 7: Let the data 
0

j
u , 

0

j
v , = 1, 2j , belong to 

2
( )L G  and 

the sequence of functions 
n

ρ  is such that: 

1) 
n

ρ  is the solution to data assimilation problem (8) with 

=
h

q P f , =
n

N N , grid time step =
n

τ τ , and the regularization 

parameter = 0
n

λ λ ≥ ; 

2) 0
n

τ → , 
n

N → ∞ , 
0

> 0
n

λ λ→  for n → ∞ , and (6) holds. 

Then 
n

ρ  contains a subsequence converging strongly in 
2

V  to 

the solution of problem (5) with the same data and 
0

=λ λ . 

 

Proof: Denote ( ){ }2= inf |m J y y Vλ λ ∈ , ( ){ }= inf |
N

s S y yλ λ ∈Ξ . 

We show that for any 
0

0λ ≥  the following inequality holds  

 
0

0, ,
0

.limsup
N

s mλ λ
τ λ λ→ →∞ →

≤                                         (12) 

 

Indeed, by the definition of the infimum, for any > 0ε  there 

exists a vector function 2y V∈  such that 
0 0
( ) / 2J y mλ λ ε≤ + . 

Due to Theorem 6, there exist 0 > 0τ , 0
N ∈N , and > 0d  such 

that 
0 0

( ) ( ) / 2NS P y J y mλ λ λε ε≤ + ≤ +  for all 0τ τ≤ , 0
N N≥ , 

and 0| | dλ λ− ≤ . Then 
0

( )Ns S P y mλ λ λ ε≤ ≤ + , which gives 

(12). For 0 > 0λ  the sequence 
n

ρ  is bounded in 2V . Select from 

it a subsequence 0n
xρ →  converging weakly in 2V  and 

strongly in 1V . Denote  
1 1 1

0 0
= ( ; ), = ( ; ), = ( ; ).

n h N n h n
n

x f x y F P f P x z F P f ρ− − −Φ   

By Theorem 6 we have  

                ( ( )) ( ) for
n

I A y I x n→ → ∞          (13) 

and || || || ||n W W
h

y c x≤  for all sufficiently large n . Since 

0 1|| || 0N n
n

P x ρ− → , then Theorem 5 implies the convergence 

|| || 0n n W
h

y z− →  as n → ∞ . Consequently, ( ) ( ) 0
n n

A y A z− →  

strongly in 2 1(0, ; )L T V , then ( ( )) ( ( )) 0
n n

I A y I A z− → . Taking 

into account (13), we see that  

                  0 0 0( ) ( ) for .
n

S J x nρ → → ∞         (14) 

 

A weak convergence of 
n

ρ  to 0x  in 2V  implies that 

0 2 0 0 2|| || || ||liminf
a a

n
n

x x xρ
→∞

− ≥ − . Taking into account (14) and 

the convergence of 0n
λ λ→ , we get  
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0

0
( ) ( ).liminf n

n
n

S J xλ λρ
→∞

≥
             

 (15) 

 

But 
n

ρ  are the solutions of (8), so ( ) =n
n n

S sλ λρ . From (12) we 

have 
0

0 0
( ) ( )limsup n

n
n

S m J xλ λ λρ
→∞

≤ ≤ . Comparing (15) with the 

last inequality we see that  

                        0
0 0

( ) = ( ) = ,lim n
nn

S J x mλ λ λρ
→∞

           (16) 

that is 0x  is the solution of data assimilation problem (5). In 

addition, from (14) and (16) we find that 
2 2

0 2 0 0 0 2=lim
a a

n n
n

x x xλ ρ λ
→∞

− −� � � � , then  

2 2

0 2 0 0 2=lim
a a

n
n

x x xρ
→∞

− −� � � � , so 0n
xρ →  strongly in 2V . 

    

Notice that the arguments of Theorem 7 imply that if 0 = 0λ  

and the sequence 
n

ρ  is bounded in 2V , then 
n

ρ  contains a 

subsequence weakly converging in 2V  to the solution to 

problem (5) with the same data and = 0λ . 

 

Conclusion 

In this paper we have considered a method of approximate 

solution of the data assimilation problem for the two-layer 

quasigeostrophic atmospheric general circulation model and 

have proved the convergence of numerical solutions to the exact 

solutions of the optimization problem. One can hope that in 

future data assimilation techniques will find application in 

various branches of science 8 10− . 
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